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ABSTRACT

Spectropolarimetric inversions of solar observations are fundamental for the estimation of the mag-

netic field in the solar atmosphere. However, instrumental noise, computational requirements, and

varying levels of physical realism make it challenging to derive reliable solar magnetic field estimates.

In this study, we present a novel approach for spectropolarimetric inversions based on Physics In-

formed Neural Networks (PINNs) to infer the photospheric magnetic field under the Milne-Eddington

approximation (PINN ME). Our model acts as a representation of the parameter space, mapping input

coordinates (t, x, y) to the respective spectropolarimetric parameters, which are used to synthesize the

corresponding stokes profiles. By iteratively sampling coordinate points, synthesizing profiles, and min-

imizing the deviation from the observed stokes profiles, our method can find the set of Milne-Eddington

parameters that best fit the observations. In addition, we directly include the point-spread-function to

account for instrumental effects. We use a predefined parameter space as well as synthetic profiles from

a radiative MHD simulation to evaluate the performance of our method and to estimate the impact

of instrumental noise. Our results demonstrate that PINN ME achieves an intrinsic spatio-temporal

coupling, which can largely mitigate observational noise and provides a memory-efficient inversion even

for extended fields-of-view. Finally, we apply our method to observations and show that our method

provides a high spatial coherence and can resolve small-scale features both in strong- and weak-field

regions.

1. INTRODUCTION

The solar magnetic field is the omnipresent compo-
nent that shapes the solar atmosphere, the heliosphere,

and drives space weather (Owens & Forsyth 2013). The

magnetic field in the lower solar atmosphere is studied

through its signatures imprinted on the polarization of

light (Casini et al. 2017). For this, spectropolarimetric

inversions are used to determine the plasma conditions

which most closely reproduce the observed polarization

signal (del Toro Iniesta & Ruiz Cobo 2016).

Methods for magnetic field inversions use an itera-

tive approach to fit the observed spectral line proper-

ties while employing different levels of sophistication.
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Recent methods can account for the varying conditions

from the photosphere, which is in local thermodynamic
equilibrium (LTE), to the chromosphere which is out

of LTE conditions (de la Cruz Rodŕıguez & van Noort

2017). However, computational requirements and nu-

merical instabilities are strong limitations for the appli-

cation of the most advanced inversions methods to the

vast amounts of data current generation of solar tele-

scopes produce (Reardon et al. 2023).

A frequently applied approximation for interpreting

lines formed in the solar photosphere is the Milne-

Eddington (ME) model atmosphere. The ME approxi-

mation poses that the source function changes linearly

over the formation height of the spectral line under

consideration, while the other atmospheric parameters

are constant over that region. ME inversions are es-

tablished in the pipelines of many current generation

magnetographs, such as the Helioseismic and Magn-

tic Imager (HMI; Schou et al. 2012) onboard the Solar
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Figure 1. Overview of the PINN ME Milne-Eddington inversion method. The neural network acts as a representation of the
parameter space, and maps pixel coordinates (t, x, y) of the input image sequence to the respective plasma parameters. For
model training, the parameters are used as input to the fully-differentiable ME forward model which yields the corresponding
spectral line profiles of the Stokes vector (I,Q, U, V ). The difference (loss) between the predicted Stokes vectors and the observed
data is used to update the network weights. The model is iteratively updated until the difference between the modeled and
observed stokes vectors converges to a minimum. From the trained model, the individual pixel coordinates can be queried to
obtain the final inversion result.

Dynamics Observatory (SDO; Pesnell et al. 2012), the

Solar Optical Telescope Spectro-Polarimeter (SOTSP;

Tsuneta et al. 2008; Lites et al. 2013) onboard Hinode,

and the Synoptic Optical Long-term Investigations of

the Sun (SOLIS; Keller et al. 2003) operated by the

National Solar Observatory (NSO), as they provide the

real-time speed required for operational needs. Further-

more, their performance has been benchmarked against

the different implementations used in the community on

realistic radiative magnetohydrodynamic (rMHD) sim-

ulations to show high degree of accuracy (Borrero et al.

2014). To enable ME inversions to utilize the corre-

lations between the neighboring pixels, inversions with

spatio-temporal coupling based on sparse-matrix algo-

rithmic approaches (van Noort 2012) have been used to

mitigate observational noise and improve the precision

of the obtained magnetic fields (Morosin et al. 2020; de

la Cruz Rodŕıguez & Leenaarts 2024). However, these

methods typically have large computational memory re-

quirements which are prohibitively challenging for larger

field-of-views and longer temporal series (e.g., full-disk

observations).

Machine learning methods were applied to solar mag-

netic field inversions and related applications (see Asen-

sio Ramos et al. 2023, for a review). A frequent ap-

proach is the use of simulated data or existing inversion

results to perform supervised training (Milić & Gafeira

2020; Socas-Navarro 2005; Asensio Ramos & Dı́az Baso

2019; Higgins et al. 2021, 2022; Gafeira et al. 2021).

While this approach can achieve significant accelerations

of inversion codes, the quality of the resulting inver-

sion strictly depends on the provided data set. In con-

trast, in this study, we develop a novel inversion method

that provides independent and self-consistent solutions,

solely based on the observed Stokes vector. This ap-

proach sets the foundation to exceed the quality and to

overcome challenges of existing inversion methods (e.g.,

computational demand of non-LTE inversions).

Physics-Informed Neural Networks (PINNs; Raissi

et al. 2019) provide a novel approach to smoothly inte-

grate physics-based models and noisy observational data

(Karniadakis et al. 2021). The method uses a neural net-

work to encode the simulation volume, where input co-

ordinates (e.g., x, y, z) are mapped to the corresponding
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physical quantities (e.g., the magnetic field B⃗(x, y, z)).

The model training is performed by fitting a given

boundary condition and by minimizing the residuals of

the physical model (e.g., partial differential equations.

Encoding the simulation volume into weights of a neu-

ral network can enable smoother solutions, with an in-

trinsic coupling of adjacent points. In addition, this en-

coding is highly memory efficient, making it well suited

for high-dimensional problems, and can simultaneously

encode small- and large-scale features. In solar physics,

the concept of a neural representation was used for mag-

netic field extrapolations (Jarolim et al. 2023, 2024a,b),

tomographic reconstructions (Bintsi et al. 2022; Jarolim

et al. 2024c; Asensio Ramos 2023), and solar flux trans-

port (Athalathil et al. 2024). Dı́az Baso et al. (2024)

used a PINN for spectropolarimetric inversions under

the Weak-Field Approximation (WFA) of chromospheric

Ca II 854.2 nm solar observations.

In this study, we present a Physics Informed Neu-

ral Network for Milne-Eddington inversions (PINN ME)

and demonstrate that spatio-temporal regularization

and the instrumental Point-Spread-Function (PSF) de-

convolution can improve magnetic field estimates of

noisy data, enabling memory efficient inversions even for

extended fields-of-view. We quantify the performance of

our method with analytical, synthetic and observational

data, and compare to recent state-of-the-art inversion

methods (Sect. 3).

2. METHOD

Our PINN ME method performs the spectropolari-

metric inversion of the full Stokes vector I,Q, U, V un-

der the Milne-Eddington assumption to obtain vector

magnetic field estimates from solar observations (B⃗).

Here, the neural network maps pixel coordinates of the

input Stokes profile to the corresponding ME parame-

ters (B, θ, ϕ, vmac, d, b0, b1, vdop, kl; see Sect. 2.1). The

ME parameters are used to synthesize the corresponding

Stokes profile, by using a fully-differentiable ME forward

model (Sect. 2.1). The resulting I,Q, U, V predictions

are compared to the observed Stokes profile, from which

we compute the loss (Sect. 2.2). By iteratively mini-

mizing the difference between the observation and the

predicted Stokes profiles, the full set of ME parameters is

found, similar to pixel-wise ME inversion methods (e.g.,

Lites et al. 2007; Hoeksema et al. 2014). In contrast to

classical ME inversion methods, this approach provides

an intrinsic coupling between adjacent pixels and opti-

mizes the full frame simultaneously. This intrinsically

provides smooth solutions which can mitigate observa-

tional noise. Furthermore, this encoding is memory effi-

cient, which allows to perform spatio-temporal coupled

inversions over extended time sequences, at full resolu-

tion. We further account for the instrumental PSF by

sampling coordinate points according to the PSF grid

(e.g., 3× 3). The resulting Stokes profiles are then con-

volved with the PSF to obtain the corresponding pixel

value of the predicted Stokes profile. This further im-

proves the spatial coupling and directly enables a de-

convolution of the deduced parameter space. Figure 1

provides an overview of the end-to-end training proce-

dure. Note that no strict boundary condition is ap-

plied (e.g., periodic boundary on the side boundaries,

padding). Therefore, sampling points at the boundary

are only partially constrained by the adjacent observa-

tional data, and can be chosen arbitrarily by the neural

network. Consequently, inversion results close to the

boundary are expected to be less reliable.

2.1. Milne-Eddington forward model

The Milne-Eddington (ME) model assumes a linearly

changing source function S(τ) with respect to the opti-

cal depth τ in the stellar atmosphere, where the ratio

of continuum to line absorption coefficients is constant

(Unno 1956; Rachkovsky 1962, 1967)

S(τ) = b0 − b1τ , (1)

where b0 and b1 are coefficients that determine the over-

all intensity and line depth. The other atmospheric pa-

rameters – magnetic field strength B, inclination angle

θ, azimuth angle ϕ, Doppler velocity vdop, macrotur-

bulent velocity vmac, line dampening al, and the contin-

uum to line absorption coefficient ratio kl – are constant

valued (i.e. they have no gradients). The ME approx-

imation holds well for spectral lines formed over a nar-

row region of the atmosphere, compared to the local

atmospheric scale height, resulting in a slowly changing

source function (Landolfi & Landi Degl’Innocenti 1982).

Also, the ME approximation does not work well for cases

with strong velocity gradients, as it is unable to repro-

duce asymmetric profiles. Based on this, the ME ap-

proximation can be valid for spectral lines formed in the

photosphere, and for optically thin lines formed higher

in thin slabs such as the He I 1083 nm line.

The advantage of the ME approximation is its fully an-

alytical description of the emergent polarized intensity

given a set of input parameters. The simplicity of its

fully analytical expressions allows for fast numerical im-

plementation as well as analytical uncertainty estimates

(Orozco Suárez & Del Toro Iniesta 2007). Nowadays,

ME inversions are the foundation of most photospheric

magnetic field studies.

2.2. PINN setup
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Figure 2. Overview of the synthetic dataset used for testing and benchmarking. a) Magnetic field strength (gauss); b) magnetic
field inclination (radians); c) magnetic field azimuth (radians); d) the constant/gradient parameters of the source function b0/b1
in the left/right part of the panel.

PINN ME is a fully-connected neural network with

eight hidden layers, each consisting of 256 neurons with

sine activation functions (i.e., SIREN Sitzmann et al.

2020). The input layer uses the three coordinate posi-

tions (x, y, t) and the output layer provides the nine ME

parameters (B, θ, ϕ, vmac, d, b0, b1, vdop, kl). We employ

positional encoding to map the input coordinates into

Fourier features (Tancik et al. 2020). For this, we select

20 random frequencies per coordinate from a normal dis-

tribution and encode the input coordinates

v⃗encoded =
[
sin (fx,0 · x), cos (fx,0 · x), sin (fx,1 · x), . . .
. . . , sin (ft,19 · t), cos (ft,19 · t), x, y, t

]
, (2)

where fi,j refers to the jth sampled frequency of coor-

dinate i. This enables the neural network to efficiently

learn high frequency features. The model provides a

total of 560,000 free parameters to encode the full pa-

rameter space. The input coordinates are normalized

to range approximately between 0 and 1, with the same

grid spacing in the spatial dimensions. For the time

coordinate, we set the first observation as the reference

point (time t = 0), calculate the time differences relative

to it, and scale the values such that one hour corresponds

to a normalized value of 1. For inversions of a single

frame the time coordinate is set to 0. For the output

parameters, we rescale the model outputs to match the

expected value range. For the magnetic field strength

(B), we use a linear output and rescale it by a factor

103. Both the inclination θ and the azimuth angle (ϕ)

use linear outputs and are scaled by π. Therefore, we

do not restrict the value range of the angles, but repro-

ject them to [0, π] after the model training. For the

rest of the parameters – macroturbulent velocity vmac,

the line damping d, the Doppler velocity vdop, the ratio

of continuum to line absorption coefficient kl, and the

source function intercept and slope (b0, b1), we use a

fixed value range by applying a sigmoid output activa-

tion (value range of [0, 1]) and scale the parameters by

2× 104, 1.0, 104, 102, 1.0, and 1.0, respectively.

As optimization target we use the observed Stokes vec-

tors. We apply an additional weighting and scaling to

increase the fitting of weak field regions and to enable

a balanced optimization of the four Stokes parameters.

We normalize the individual Stokes parameters by the

maximum value in the data, such that I ranges between

[0, 1], and Q,U, V range between [−1, 1]. The resulting

Stokes vector is normalized through an asinh stretch

S⃗scaled =
asinh(S⃗ · 102)
asinh(102)

, (3)

where S⃗ refers to the Stokes vector. This provides a

linear scaling close to 0 and a logarithmic scaling for

larger values, resulting in a better balancing between the

optimization of weak and strong magnetic field regions.

2.3. Reference method - PyMilne

We compare the results from PINN ME to PyMilne,

a state-of-the-art ME inversion method (de la Cruz

Rodŕıguez 2019). PyMilne uses an efficient hybrid

implementation in Python/Cython, which allows for

spatially-coupled inversions including the instrumental

PSF and spatio-temporal regularization (Morosin et al.

2020; de la Cruz Rodŕıguez & Leenaarts 2024). PyMilne

uses a standard sparse matrix approach for solving the

coupled equations system (de la Cruz Rodŕıguez 2019).

This provides improved magnetic field inversions, but

has significant memory requirements. Therefore, this

method provides an ideal reference to assess the perfor-

mance of our inversions and to outline the advantages of

the PINN approach in terms of memory consumption.

We note that we use very similar atomic parameters to

the one in PyMilne, based on the NIST atomic database

(Kramida et al. 2024).

2.4. Data

In this study, we consider three data sets to validate

our approach and to compare to recent state-of-the-art

inversion methods.
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(1) Analytical data: We synthesize Stokes profiles

from a predefined parameter space. We use this data set

to validate the self consistency of the method against

other ME inversion methods. Using synthetic profiles

from ME synthesis to benchmark the performance of

the method in its range of validity, compared to using

more complicated radiative transfer products tests only

the performance of the code (Borrero et al. 2014).

The atmospheric parameters in this dataset have ei-

ther an azimuthal or radial symmetry, as shown in Fig-

ure 2. We also include sharp discontinuities in the mag-

netic field inclination (panel b in Figure 2) paired with

a wide range of field strengths to test the accuracy and

precision of the inversion code under different magnetic

field strength regimes, while also probing the extent to

which PINN ME can recover the discontinuities when a

spatial PSF is applied and accounted for. We also ex-

tend the dataset in time by increasing the length scales

of the concentric circles (video available online), to test

the temporal regularization of our inversion approach.

We define the magnetic field strength B as

B = B0 ·
(

r0
r + r0

)2

, (4)

the inclination angle θ in radians as

θ =
r mod r0

r0
· π , (5)

the azimuth angle ϕ in radians as

ϕ = arctan (
y

x
) +

t

180
· π , (6)

and the ME parameters b0 and b1 as

b0,1 = a0,1

(
10 · r0

r + 10 · r0

)2

, (7)

where t refers to the timestep (20 frames; [0, 19]), x

and y to the spatial axis ([-200, 200]), r to the ra-

dius (r =
√

x2 + y2), B0 to the scaling of the mag-

netic field strength (B0 = 2000), ro to the scaling factor

(r0 = 50 + t
2 ), and a0,1 to the scaling factor of the ME

parameters, which we set to a0 = 0.8 and a1 = 0.2.

The remaining four parameters are set constant with

vmac = 2.0e3, d = 0.2, vdop = 2.0e3, and kl = 25.

We synthesize the Fe I 630.2 nm line with the PyMilne

code (de la Cruz Rodŕıguez 2019), where we utilize the

wavelength sampling parameters of the Hinode/SOTSP

telescope (wavelength spacing of 0.0217 Å).

The obtained profiles are further degraded to quantify

the impact of instrumental effects (i.e., noise, PSF) on

our inversion method. For this we construct a 3×3 PSF

from a normal distribution with σ = 1. For each Stokes

vector, and spectral point, we convolve the image with

the PSF and a normal distributed random noise factor

per pixel. Here, we vary the level of the noise between

zero (only the PSF), 1e-4, 1e-3, and 1e-2.

(2) Simulated data: We use synthetic Stokes pro-

files of the Fe I 630.2 nm line which were synthesized

from a MURaM radiative MHD simulation (Vögler et al.

2005; Rempel 2012) of a sunspot, used previously in Bor-

rero et al. (2019). The simulation box size is 4096 ×
4096×768 in (x, y, z) with a grid size of ∆x = 12, ∆y =

12, and ∆z = 8 km. As in Borrero et al. (2019), we used

a subset of the domain spanning of size 4096×512×192

grid points covering 49.152 × 6.144 × 1.536 Mm3, cen-

tered on the sunspot.Here, the full 3D magnetic field

was obtained from the simulation, and the synthetic

observables were synthesized using the Stokes Inversion

based on Response functions code (SIR; Ruiz Cobo &

del Toro Iniesta 1992). Note that this method synthe-

sizes line profiles under the LTE assumption, resulting

in more complex profiles than could be fitted by an ME

approach. We further reduce the resolution by a factor

4, apply the PSF from Hinode/SOTSP, and add a noise

factor of 1e-3 to the profiles (analogously to (1)). From

this we obtain synthetic observations with a high degree

of realism. By comparing the inversion result of mag-

netic field parameters to the known ground-truth field

we can estimate the model performance in a realistic

setting. While the LTE profiles provide a more realis-

tic approximation of solar observations, the parameters

cannot be mapped directly to a specific height surface.

(3) Observational data: We use observations from

Hinode/SOTSP to demonstrate the applicability of our

approach and to compare to the conventional pipeline

inversions. The observations are obtained from a slit

spectrograph. The considered observation has a spa-

tial resolution of [0.15, 0.16] arcsec per pixel, and a

spatial extent of 153.6 × 81.92 arcsec2. The observa-

tions were obtained from 2007 January 5th 23:59:07

to 6th 01:25:57, close to the disk center, and include

both strong and weak field regions (see Fig. 6). For

comparison against the PINN ME results, we use the

standard pipeline inversions1 provided by the Milne-

Eddington gRid Linear Inversion Network (MERLIN;

Lites et al. 2007) code. Here, we adjust the outputs

from MERLIN to account for the filling factor correc-

tion (BLOS = s · BLOS, BTRV =
√
s · BTRV, where s

corresponds to the stray light correction factor).

1 https://csac.hao.ucar.edu/sp data.php

https://csac.hao.ucar.edu/sp_data.php
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Figure 3. Comparison of PINN ME and PyMilne per-
formance for the test set under different noise levels. a)
Model performance as function of data degradation. We
consider the unmodified ground-truth data (clear), the PSF-
convolved data (PSF), and PSF-convolved data with added
noise levels of 10−4 to 10−2. b) Inferred magnetic field pa-
rameters of the individual models for the PSF-convolved
10−2 noise case. The top panel shows the Ground-Truth
magnetic parameters (BLOS, BTRV, ϕ). We show the inver-
sion results from PINN ME, with the static assumption, the
included time component, and the additional PSF, as well as
PyMilne inversion results for the pixel-wise inversions, and
the spatially coupled inversions with included PSF.

2.5. Evaluation Metrics

While ME inversions provide nine free parameters,

we focus our evaluation solely on the derived magnetic

field. Milne-Eddington inversions provide the absolute

magnetic field strength B, the inclination angle of the

field θ, and the azimuth angle ϕ, from which we com-

pute the line-of-sight magnetic field (BLOS = B · cos θ)
and the transverse field BTRV = B · sin θ). In addi-

tion, we reproject the azimuth angle to a value range

of [0, π), to exclude the 180 degree ambiguity from

our evaluation. From the full magnetic field vector

(B⃗ = (BLOS, BTRV · cos(ϕ), BTRV · sin(ϕ))), we compute

normalized error metrics between the reference magnetic

field B⃗ref and the inversion result B⃗ (Schrijver et al.

2006). To measure the difference between vectors, we

compute the mean error normalized by the average vec-

tor norm

En(B⃗ref , B⃗) =

∑
i∥B⃗i − B⃗ref,i∥∑

i∥B⃗ref,i∥
. (8)

Here, i denotes the index of the grid cell, and the sum

is computed over all grid cells. The best performance is

achieved when En = 0. We set E′
n = 1 − En, such that

the best attainable performance corresponds to 1. In

addition, we use the vector correlation coefficient (Cvec),

which compares the local characteristics of the magnetic

field vectors

Cvec(B⃗ref , B⃗) =

∑
i B⃗ref,i · B⃗i(∑

i∥B⃗ref,i∥2
∑

i∥B⃗i∥2
)1/2

. (9)

3. RESULTS

In this section, we perform a quantitative evaluation

of our method with synthetic Stokes profiles and pro-

vide a qualitative comparison with observational data.

Throughout this section, we compute E′
n and Cvec for

the quantitative evaluation and use the line-of-sight

magnetic field strength BLOS, the transverse magnetic

field strength BTRV, and the azimuth angle ϕ for visu-

alizations.

3.1. Test set

We use the analytical test set to validate the self-

consistency of our method. The sharp transitions in

the inclination angle and the drop off in polarization

signal from the center make this a challenging appli-

cation for inversion methods (see Fig. 2). We apply

both our PINN ME and the PyMilne inversion meth-

ods to the test set where we vary between the unmodi-

fied (clear) profiles, the PSF-convolved profiles, and the

PSF-convolved profiles with three noise levels (1e − 4,
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Figure 4. Results of PINN ME and PyMilne inversions of the synthetic stokes profiles from the MURaM simulation. a)
Magnetic field LOS component (left column), transverse component (center column), and the magnetic field azimuth (right
column) for the considered model configuration (labeled on the right). The ground-truth (MURaM) field corresponds to the
τ = 10−2 layer. b) Zoom in of the region of interest outlined by the black rectangle in panel a for the different models.

1e − 3, 1e − 2). In Fig. 3, we show the evaluation of

the derived parameters. We compare our PINN ME ap-

proach, with and without the additional PSF sampling,

and PyMilne inversions using regular pixel-by-pixel in-

versions and spatially regularized inversions including

the spatial PSF (PyMilne PSF). The PyMilne inversions

are applied to a single frame (frame 10), while our PINN

ME inversions are applied to the full time sequence. For

reference, we also perform inversions with PINN ME

for a single time step (PINN ME static), which also ac-

counts for the PSF. All evaluations are performed with

the central time step (frame 10) of the sequence. The

quantitative evaluation shows the clear trend of degrad-

ing inversions with increasing noise level (E′
n, panel a).

The derived solutions with and without PSF show al-

most identical solutions for PINN ME. For PyMilne the

additional inclusion of the PSF provides an improve-

ment over the pixel-wise inversions. From Cvec it can

be seen that PINN ME achieves throughout a better

estimation of the magnetic field parameters, where the

biggest improvement is achieved by including the tem-

poral evolution. Especially in the case of strong noise,

the performance decrease of PINN ME is small com-

pared to PyMilne inversions. This is largely attributed

to the temporal regularization, as can be seen from the

larger performance decrease of PINN ME Static. Panel

b shows the obtained magnetic field parameters for the

strong noise case (10−2). The comparison illustrates

that the weak field regions, with a low signal-to-noise

ratio, dominate the error. Here, PINN ME and PyMilne

show equal amounts of noisy reconstructions in the low

signal region, while the temporal inversions largely im-

prove the results and recover valid magnetic field ori-

entations and strengths. PyMilne PSF shows a distinct
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Figure 5. Evaluation of the inversion results of the synthetic MURaM stokes profiles. a) Histograms between the inferred and
true line-of-sight magnetic fields for the four considered model configurations (PyMilne, PyMilne PSF, PINN ME, and PINN
ME PSF). The red lines represents the ideal correspondence between the reference and inverted parameters. The left most panel
shows the LOS magnetic field histograms, the middle one the transverse magnetic field, and the right one the magnetic field
azimuth. Panels b) show the power spectra of the LOS magnetic field (left panel), transverse magnetic field (middle panel), and
the magnetic azimuth angle (right panel).

performance decrease of Cvec for the PSF convolved pro-

files. This is a result of the spatial regularization close

to the sharp change of the inclination angle, where the

spatially coupled inversions result in a larger deviation

at the discontinuity. Note that both the spatial and

temporal smoothness of PINN ME are not explicitly en-

forced, but are a result of the neural encoding of the

parameter space, which favor coherent solutions (c.f.,

Dı́az Baso et al. 2024). Therefore, our method provides

spatial and temporal smoothness, while also correctly

accounting for sharp discontinuities.

3.2. Synthetic profiles from simulation

The test case illustrates the validity and applicabil-

ity of PINN ME for an idealized inversion problem, and

demonstrates that limitations imposed by noise and the

PSF can be largely mitigated by the concept of a neural

representation. The test set represents a smooth param-

eter space and includes sharp discontinuities. However,

to estimate the applicability to solar observations, the

additional structural complexity and more realistic spec-

tral line profiles need to be considered. In this section,

we use synthetic line profiles obtained from a MURaM

simulation of a sunspot to estimate the performance of

PINN ME in a more realistic setting that is closer to

actual observational data. Here, we use spectral lines

that are synthesized under LTE conditions, resample

the data to the Hinode/SOTSP resolution, and apply

the instrumental PSF and add 10−3 noise to mimic so-

lar observations.

Figure 4 shows the result of PINN ME and PyMilne

inversions, both with and without the PSF correction.

Overall, both methods show a good agreement with the

reference MURaM data, especially on the large scales.

The subframe in panel b provides a closer comparison

of the sunspot penumbra. Here, both PINN ME and

PyMilne achieve a similar degree of spatial resolution,

which is slightly smoother than the reference field. By

including the PSF, both methods show a strong increase
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Figure 6. Inversion results from PINN ME PSF and MERLIN for Hinode/SOTSP observations of NOAA AR 10933. a) Full
field-of-view results for the inferred LOS magnetic field, transverse magnetic field, and the magnetic field azimuth angle. b)
Zoomed-in quite-Sun region as indicated by the magenta square in panel a. c) Zoomed-in region of the sunspot penumbra as
indicated by the green square in panel a.

in resolution, however the enhanced features only show

a partial agreement with the MURaM reference, and the

contrast of BTRV is artificially high. For PyMilne, the

addition of the PSF further leads to small scale artifacts.

In Figure 5, we provide a quantitative comparison of

the results, where we plot 2D histograms of the true

and inferred BLOS, BTRV, and the azimuth angle. The

overall scatter of BLOS and BTRV is low, and show a

good one-to-one correspondence (correlation coefficient

r = 0.99). For the azimuth angle, larger deviations from

the reference field are present for both methods, where

PINN ME achieves a better correlation coefficient with

r = 0.72, while PyMilne achieves r = 0.68 and r = 56 for

the case of spatially coupled and pixel-wise inversions,

respectively. In panel b, we present the power spectra

of the two dimensional maps of the inferred physical pa-

rameters, which were computed from the amplitude of

the two dimensional Fourier transforms of the physical

parameters, averaged in the azimuthal plane. The power

spectra show that PINN ME retrieves more small scale

features compared to the PyMilne inversions, given by

the white noise floor that is being reached at higher fre-

quencies. Furthermore, most notable, the white noise

floor in the power spectra of the PINN ME inversions

are reached at lower values, as shown in Figure 5. The

lower white noise floor demonstrates that the PINN ME

inversions have on average lesser white noise in them,

compared to the reference methods exhibiting higher

white noise floors in the power spectra. However, note

that in some cases PINN ME inversions have signifi-

cantly lower white noise limit compared to the MURaM

case, which is related to the encoding of the neural field

in our implementation. Note that the spectral profiles

are not obtained from a single height surface, therefore

it is not possible to uniquely compare the derived pa-

rameters. Here, we compare to the magnetic field pa-

rameters at the primary formation height at an optical

depth of τ = 1e−2. Note that the inversion without the
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additional PSF results in a smoother solution, and con-

sequently a better agreement with magnetic parameters

at a lower optical depth is expected.

3.3. Application to Hinode/SOTSP observation

In this section, we apply our inversion method to ob-

servations from Hinode/SOTSP and provide a qualita-

tive comparison to the magnetic field that is provided

by the standard Hinode/SOTSP pipeline (MERLIN).

Figure 6 shows the magnetic field components (BLOS,

BTRV, and the azimuth angle) as obtained from our in-

version including the PSF correction and the MERLIN

inversions including the correction for the filling factor

described in Section 2.4. The full field of view indicates

that both methods recover a similar magnetic field dis-

tribution (panel a), however the PINN ME inversions

lead to slightly stronger magnetic fields and to smoother

distributions of the azimuth angle in the quiet-Sun re-

gion.

Panel b shows a subframe of the a quite-Sun region.

Here our inversions show a smoother distribution of

magnetic elements, as compared to the MERLIN in-

versions. In particular, the two positive magnetic ele-

ments (black arrows) are recovered as more extended re-

gions in our inversions. BTRV of the MERLIN inversions

show a lower spatial coherence than our PINN ME in-

versions. A distinct difference is that stronger magnetic

elements (|BLOS| ≥ 500G) show a vertical orientation

in the PINN ME inversions (white arrows), while the

MERLIN inversions show a horizontal field component.

The azimuth angle shows the largest difference in terms

of spatial smoothness, where the PINN ME inversions

appear more spatially correlated.

Panel c provides the subframe of the sunspot penum-

bra, noted as the green square in panels a. In contrast

to the quite-Sun region, PINN ME inversions show a

higher contrast in the inferred parameters. In particu-

lar, BTRV shows a clearer separation of individual fib-

rils, while retrieving stronger horizontal magnetic fields.

From BLOS it can be seen that PINN ME resolves small

scale negative polarity elements (gray arrow) that are

not present in the MERLIN inversions. While there is

no ground-truth available to estimate the validity of the

inferred magnetic fields, the small scale opposite polar-

ity elements in the penumbra are similar to features in

the MURAM simulation (Fig. 4), where also negative

polarities are present in the positive magnetic field of

the sunspot penumbra.

p

4. DISCUSSION

In this study, we have developed a novel method for

magnetic field inversions under the Milne-Eddington ap-

proximation. We build on PINNs to encode the space of

ME parameters into the weights of a neural network. For

this, the neural network maps coordinate points (x, y, t)

to the respective inversion parameters (B, θ, ϕ, etc.).

This encoding enables an intrinsic spatial and temporal

coupling of observations, which largely mitigates instru-

mental noise and limitations of the ME assumption (c.f.

Dı́az Baso et al. 2024). In addition, we propose to per-

form a spatial sampling of the PSF which enables an

intrinsic deconvolution. Our method has no limitations

in memory requirement, and can be applied to datasets

with large fields-of-view and temporal extent, expanding

current capabilities limited by memory constraints.

We perform a thorough evaluation, where we con-

sider an idealized test set, which we synthesize from

a pre-defined complex parameter space (Fig. 2); syn-

thetic spectral line profiles obtained from a realistic full

MHD simulation and synthesized under LTE conditions

with the SIR code; and observational data from Hin-

ode/SOTSP. The application to the test set demon-

strates that the intrinsic spatial and temporal regular-

ization can achieve valid inversions even in the case of

low signal-to-noise. Here, our PINN ME approach sub-

stantially outperforms pixel-by-pixel inversions. The in-

direct spatial regularization prevents artificial smooth-

ing close to sharp transitions as can be seen by the com-

parison to PyMilne inversions, which uses an explicit

regularization scheme. The primary improvement of the

inversion is achieved by including the temporal evolu-

tion, where even in the case of a changing field, the

temporal information provides the decisive component

to recover signal in case of high noise (Sect. 3.1). The

application to synthetic profiles from a MURaM sim-

ulation demonstrates that our method is applicable to

complex data that is similar to solar observations, and

can account for spectral lines that are not in agreement

with the ME assumption. The comparison to PyMilne

demonstrates that similar results are obtained. Over-

all, inversions that explicitly model the PSF lead to a

higher contrast of the obtained magnetic field and better

resolved small scale features, however a direct compar-

ison is limited since the synthetic line profiles cannot

be directly associated with a distinct height surface, as

assumed by the ME inversions. The application to ob-

servational data demonstrates that our inversions pro-

vide a better spatial coherence than the regular Hin-

ode/SOTSP data product (MERLIN inversions). In the

quiet-Sun and plage regions, our method infers more

extended magnetic elements as compared to the MER-

LIN inversions, while for the strong magnetic field of

the sunspot penumbra, individual fibrils are resolved

with higher spatial resolution. The two most promi-
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nent differences between PINN ME and MERLIN in-

version are the opposite polarity elements that are re-

solved in the sunspot penumbra by our approach, while

they are not present in the MERLIN inversions; and the

stronger horizontal fields inferred from PINN ME com-

pared to MERLIN. Comparison with simulated MURaM

data suggests that these features are physically sound.

Our PINN ME model is used to invert Stokes pro-

files over large fields-of-view and time sequences. For

the synthetic MURaM sunspot, the inversion process

converges in approximately two hours using four V100

GPUs. The primary advantage of the PINN approach

is its efficient encoding of patterns in the data, en-

abling similar convergence times even for larger data

volumes (cf. neural network-based tomographic recon-

structions; Jarolim et al. 2024c). A potential future ap-

plication is the continuous inversion of SDO/HMI data,

where a running sequence of frames could be inverted

with minimal additional computational cost (c.f., PINN

based force-free extrapolations Jarolim et al. 2023). An

alternative approach to improving computation times

could involve using pre-trained states, which may facil-

itate faster convergence (e.g., meta-training algorithms

Nichol 2018). However, the primary motivation of this

study is an initial demonstration of PINNs for spec-

tropolarimetric magnetic field inversions. Here, our ap-

proach demonstrates that we achieve a similar perfor-

mance as recent state-of-the-art methods. The distinct

advantage is the ability to solve high-dimensional prob-

lems in a memory efficient way and to mitigate observa-

tional noise. This provides the foundation and demon-

strates the large potential to apply PINNs for LTE and

non-LTE inversions, where the neural network can ef-

ficiently encode extended solar atmospheres (x, y, z, t)

and model the full set of thermodynamical parameters.

In addition, this method has the potential to efficiently

address level populations and radiative transfer, which

are primary sources of long compute times for recent

methods (Socas-Navarro et al. 2000; Ruiz Cobo et al.

2022).

5. DATA AVAILABILITY

All our inversion results are publicly available.

• Data: https://app.globus.org/file-manager?

origin id=aa4a093a-5b00-4a4b-b8d4-5bb65f324c8c&

origin path=%2F

• Code: https://github.com/RobertJaro/pinn-me
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Vögler, A., Shelyag, S., Schüssler, M., et al. 2005, A&A,

429, 335, doi: 10.1051/0004-6361:20041507

http://doi.org/10.1007/s11207-008-9174-z
http://doi.org/10.1051/0004-6361/201220220
http://doi.org/10.1051/0004-6361:20041507

	Introduction
	Method
	Milne-Eddington forward model
	PINN setup
	Reference method - PyMilne
	Data
	Evaluation Metrics

	Results
	Test set
	Synthetic profiles from simulation
	Application to Hinode/SOTSP observation

	Discussion
	Data availability
	Acknowledgments

